1)When a four digit number is multiplied by N,the four digit number repeats itself to give an 8 digit number .If four digit number has all distinct digits then N is a multiple of ?

a)11 b) 37 c)73 d) 27

Ans 73

2)Find the greatest and least values of

f(x) = x^4 +x^2+5 / (x^2+1)(x^2+1)

for real x

a)5,0.95 b ) 5,-1 c)4,0 d)3,2

Ans a

3)Out of m persons sitting at a round table in how many ways no two of the persons

A,B, C are sitting together?

a)m(m-1)(m-2) b)m(m-2)(m-3) c)m(m-4)(m-5) d)m(m-1)

Ans c

4)A bookworm starts eating pages of a book from a certain page number in ascending order of page numbers without missing a single page between the first and last pages eaten by it .When it finished with its job it counts the sum of the page numbers of

all the pages eaten and finds that the sum is 198.Find the page number where it stopped eating?The cover page of the book is page number 1 and the worm always eats both sides of a sheet.

a)11 b) 22 c) 33 d ) 44

Ans c

5)The number from 1 to 33 are written side by side as follows : 123456………..33.If this number is divided by 9 what is the remainder?

a)0 b)1 c)3 d) 6

Ans c

6) A positive three digit number X is such,when divided in two unequal three digit number,the larger part is the aritmetic mean of X and the smaller part.How many values can X take?

a)300 b)234 c)198 d)None

Ans b

7)A 101 digit number 222………2X3…333 is formed by repeating the digit 2,50 times followed by the digit X and then repeating the digit 3,50 times.The number is a multiple of 7.Find the value of X.?

a)2 b)3 c ) 4 d ) 5

Ans d

8) There are ten coin making machine.Nine of them produces coins of 10 gm each while the tenth machine produces coins with 11 gm weight . If one has a weight measuring instrument to measure weight in grams,how many minimum number of readings are required

to determine which machine produces heavier coins?

a)1 b)3 c)4 d)None of these

Ans a

9)A student is solving a maths problem.He attempts to solve a particular problem where he has to determine the sum of the squares of the roots of the given polynomial.

The print having faded over time,he can see only 3 terms of the fifth degree polynomial

x^5-11x^4+….-13=0 is all that is visible.He still manages to find the answers What is it given that -1 is the root and all other roots are integers?

1)171 2)173 3)169 4)None

Ans 2

10) The number 444444….(999 times) is definitely divisible by:

a)22 b)44 c)222 d)444

Ans c

11)If a three digit number is divided into three two digit numbers and if all these three two digit numbers from an A.P. with a common difference of 20.How many three digit numbers satisfy this condition?

a)54 b)45 c)46 d) 55

Ans c

12) If first 23 terms of the series 1,11,111 are added together ,what digit would occupy the thousands place?

a)3 b)0 c)9 d)2

Ans d

13)A chord is drawn arbitrarily in a given circle.What is the probability that the length of the chord is less than or equal to the radius of the circle?

a)0.5 b)0.25 c)0 d)0.33

Ans d

14) Ravi,Deepak and Amod started out on a 100 mile journey.Ravi and Deepak went by car at the rate of 25mph,while Amod walked at the rate of 5 mph.After a certain distance,Deepak got off and started walking at 5 mph,while Ravi drove back for Amod and

got him to the destination in the car at the same time that Deepak arrived.

Q)What is the time taken by Amod to finish the journey?

a)6 b)7 c)8 d)None

Ans c

Q)What was the total distance(in miles) travelled by Ravi?

a)100 b)200 c)250 d)150

Ans b

15)How many natural numbers are factors of 7560 and multiples of 14?

a)20 b)22 c)24 d)28

Ans c

16)Definition:If a,k and n are positive integers with k>1,and n=k*a ,then a is called

proper divisor of n.How many positive integers less than 54 are equal to the product of their proper divisors?

a)1 b)8 c)10 d)14

Ans d

17) Given that A is a six digit number with unit digit of 1,and B is a natural number which is the fourth root of A,what is the largest possible value of B?

a)23 b)29 c)31 d)37

Ans 31

18)How many integers greater than 40,00,000 and less than 90,00,000 are perfect squares?

a)100 b)999 c)1000 d)1999

19)Six integers are selected from 1 to 100 in such a way that the smallest positive difference between any two of them is as large as possible.What is this difference?

a)16 b)17 c)19 d)20

20)How many different points in the xy plane are at a distance of 5 from the origin and have coordinates (a,b) ,where a and b are integers?

a)4 b)6 c)8 d) 12

A survey was conducted in a city to determine the choice of channel (DD, BBC

and CNN) among viewers in viewing the news. The viewership for these three

channels is 80, 22 and 15 percent respectively. Five percent of the

respondents do not view news at all.

Ques: What is the maximum percent of viewers who watch all the three

channels?

1)22 2)15 3)11

ANS: We know that

n(A)+n(B)+n(C)-n(AintersectionB)-n(BintersectionC)-n(AintersectionC)- (2 x

All three) = 95

To have a max. intersection, the intersecting pairs must be 0

Or, 80+22+15 -2X = 95

Or, x=11

A fruit vendor bought 100 pounds of berries for

> > $2.00 per pound and

> > expected to double his investment by selling the

> > berries for $4.00

> > per pound at an open-air market. The vendor only

> > managed to sell 50

> > pounds of berries the first day and he sold the

> > remainder on the

> > second day. The fresh berries had a content of 99%

> > water, but because

> > of the hot weather, the berries dehydrated and

> > contained only 98%

> > water on the second day. How much profit did the

> > vendor make?

Rohit Arora is absolutely right about the first day .. so whatever he

sold the second day is the profit. But explanation for second day is

wrong as the weight of berry can’t increase .. instead water has to

dry out..

Initially vendor had 100 pounds in all at 99% which means he had 99

pounds of water and 1 pound of actual berry.

Now at the end of the first day the vendor is left with 50 pound(half

of 100) in all i.e. he had 49.5 pounds of water(half of initial) and

0.5 pound of berry(half of initial). [Remeber this is still the first

day so %age of water in berry should be 99% which is actually correct

as 49.5/50 * 100 = 99% ]

Now let the water in berry be x pounds (after water dries out a bit)

also weight of actual berry is 0.5 pound (as this will not dry out)

Also it is given that percentage of water on second day is 98%

=> Water/(Water+Berry) = 98/100

=> x/(x+0.5) = 98/100

=> 100x = 98(x+0.5)

=> 100x = 98x + 49

=> 2x = 49

=> x = 24.5 pounds

So on second day … water = 24.5 pounds and actual berry = 0.5 pounds

(as this will not dry out) => total berry = 25 pounds

Now this berry is sold at $4 per pound which gives a total profit of

25*4 = $100 which is the answer.

=>

1. A club with x members is organised into 4 committees according to the following rules :

(i) Each member belongs to exactly 2 committees

(ii) Each pair of committees has exactly 1 member in common.

Then find the value of x….?

2.The no. of integer lying between 3000 and 8000(both included) that have at least 2 digits equal.

3.The coefficient of x^4 in the expansion of (1+x-2x^2)^7 is .

4. A closet has pairs of shoes. The no ways in which 4 shoes can be chosen from it so that there be no complete pairs.

5. Distance passed over by a pendulum bob in successive swing are 16, 12, 9, 6.75..cm. Then the total distanced traversed b the bob before it come to rest is (in cm) A. 60 B. 64 C.65 D.67.

6 The point (2,1), (8,5) and (x,7) lie on a straight line , find the value of x..?.

7.Eight singers participate in an art festival where m songs are performed. Each song is performed by 4 singers, and each pair of singers performs together in the same number of songs. Find the smallest m for which this is possible. A. 12 B.14 C.16 D.18

When two fat fish of identical volume were placed inside the tank, the water level rose to a height of 25 cm.

(a) What is the volume of one fat fish?

(b) How many small turtles of volume 250 would be needed to replace the fish?

10. In D ABC, ÐC = 90, ÐA = 30 and BC = 1. Find the minimum of the length of the longest side of a triangle inscribed in ABC (that is, one such that each side of ABC contains a different vertex of the triangle).

11. Starting at (1, 1), a stone is moved in the coordinate plane according to the following rules:

(i) From any point (a, b), the stone can move to (2a, b) or (a, 2b).

(ii) From any point (a, b), the stone can move to (a-b, b) if a > b, or to (a, b-a) if a **5) whose centers form an equilateral triangle. Prove that m = n = 6, and find the angles of ABC.****25. Find all real numbers x such that X [x [x [x]]] = 88:**

26. Two players take turns drawing a card at random from a deck of four cards labeled 1,2,3,4. The game stops as soon as the sum of the numbers that have appeared since the start of the game is divisible by 3, and the player who drew the last card is the

winner. What is the probability that the player who goes first wins?

27. Find all triples (x, y, n) of positive integers with gcd(x, n + 1) = 1 such that x^n + 1 = y^n+1.

28. The point P lies inside an equilateral triangle and its distances to the three vertices are 3, 4, 5. Find the area of the triangle.

29. A triangle ABC has positive integer sides, angle A = 2 angle B and angle C > 90. Find the minimum length of the perimeter of ABC.

30. A country has 1998 airports connected by some direct flights. For any three airports, some two are not connected by a direct flight. What is the maximum number of direct flights that can be offered?

31. The side lengths of a triangle and the diameter of its incircle are 4 consecutive integers in an arithmetic progression. Find all such triangles.

32. We have a 102 * 102 sheet of graph paper and a connected figure of unknown shape consisting of 101 squares. What is the smallest number of copies of the figure, which can be cut out of the square?

33. Remainder when 3^37 is divided by 79. ? A.78 b.1 c.2 d.35

34. Number of ordered pair of integer x^2+6x+y^2 = 4 is. A.2 b.4 c.6 d.8.

35. Remainder when 3^2002 + 7^2002 + 2002 is divided by 29.

36. a1, … , a8 are reals, not all zero. Let cn = a1n + a2n + … + a8n for n = 1, 2, 3, … . Given that an infinite number of cn are zero, find all n for which cn is zero.

37. In how many ways can Rs. 18.75 be paid in exactly 85 coins , consists of 50 paise, 25 p and 10p coins.

38. In a certain community consisting of p persons , a % can read and write : of the males alone b % , and of the females alone c % can write : find the no. of males and females in the community (in a, b, c and p terms) .

39. A no. of 3 digit in base 7 when expressed in base 9 has it’s digits reversed in order : find the no.

40 A man has to take a plot of land fronting a street : the plot is to be rectangular , and 3 times it’s frontage added to 2 it’s depth is to be 26 metres. What is the greatest no of square metres he can take.

41. A farmer sold 10 sheep at a certain price and 5 others at Rs. 50 less per head : the sum he received for each lot was expressed in rupee by the same 2 digits: find the prices per sheep.

42. If A tell B , that he has thought of a 3 digit no. , in such a way that the sum of all of its digit happens to be a prime no. If based on this information only B tries to find the no. , what is the probabilities that she will find the prime no. in

the first guess .

43. The area of intersection of 2 circular discs each of radius r and with the boundary of each disc passing through the center of the other is ..

44. Find 3 consecutive integer each divisible by a square greater than 1.

45.Find the 3 consecutive no , the first of which is divisible by a square , the second by a cube and third by a fourth power .

46. A gang of 17 pirates steal a sack of gold coins. When the start dividing the loot among them there was 3 coin left. They start fighting for the 3 left over coins and a pirates was killed. They decided to re-divided the coins , but again there was 10

coin left over. Again the fight and another pirates was killed. However they were third time lucky as this time loot was equally distributed. Now tell the least no. of coin satisfying above condition.

47. Find all prime for which the quotient (2^p-1 – 1)/p is a square.

48. find all a, b ,c such that the roots of x^3+ax^2+bx-8=0

49. Find all pairs of integer (x,) such that (x-1)^2=(x+1)^2+(y+1)^2.

50. ABC is an isosceles triangle with AC = BC . The median AD and BE are perp. To each other and intersect at G . If GD = a unit , find the area of the quadrilateral CDGE.

51 A regular octagon with sides 1 unit long is inscribed in a circle . Find the radius of the circle.

52 A regular octagon with sides 1 unit long is circumscribed in a circle . Find the radius of the circle.

53. In a recent exam, your teacher asked 2 difficult questions : “Eugenia ,which is further north, Venice or Vladivoski?” and “What is the latitude and longitude of the north pole?”.Of the class, 33 1\3% of the students were wrong on the latitude question , but only 25% missed the other one. 20% answered both questions incorrectly. 37 students answered both questions correctly . How many students took the examination?

54. Two people agree to meet at a given place between noon and 1 p.m. By agreement, the first one to arrive will wait 15 min for the second, after which he will leave. What is the probability that the meeting actually take place if each of them selects his

moment of arrival at random during 12 noon to 1 p.m?

55. A positive no n, not exceeding 100 is chosen in such a way that if n is less than or equal to 50, then probabilities of choosing n is 10 and if n > 50 then it is 3p. What is the probability of choosing a square?

56. What is the greatest area of a rectangle th esum of whose 3 sides is equal = 100.

Ans. 1250 .

57. A plane figure consists of a rectangle and an equaliteral triangle constructed on one side of the rectangle . How large is the area of that figure in the term of perimeter.

Ans. 6+ sqrt(3)/132 p^2.

58. A reservoir is shaped like a regular triangle . A ferry boat goes from point A to point B both located on the bank . A cyclist who has to get form A to B can use the ferry boat or to ride along the bank . hat is the least ratio between the speed of

cyclist and the speed of the boat at which the use of the boat does not give any gain in time, the location of the point A and B being arbitrary ?

Ans. 2.

59. Find the greatest volume of the cylinder inscribred in the given cone.

Ans. V(R/3) = 4/27 * pie H*R*R

60. In a party with 1982 persons, among any group of four there is at least one person who knows each of the other three. What is the minimum no. of people in the party who know everyone else.

Ans. ??(not have)

61. In a party with 1982 persons, among any group of four there is at least one person who knows each of the other three. What is the minimum no. of people in the party who know everyone else.

62 A chord PQ is drawn on a circle. If the length of PQ is equal to the radius of the circle, then what is the probability that any line drawn at random from point P through the circle is smaller than PQ A. 1/2 B. 1/3 C. 2/3 D. 3/5.

63 Between 2 station the first, second and the third class fares were fixed in the ratio 8:6:3, but afterwards the first class were reduced by 1/6 and second class by 1/12. In a year no. of first second and third class passenger were in ratio 9:12:26 and

the money at the booking counter was 1326. How much was paid by the first class passenger? A. 320 B. 390 C.420 D. None. Of these.

64 . A magician has one hundred cards numbered 1 to 100. He puts them into three boxes, a red one, a white one, and a blue one, so that each box contains at least one card. A member of the audience selects two of the three boxes, chooses one card from

each, and announces the sum of the numbers on the chosen cards. Given this sum, the magician identifies the box from which no card has been chosen. How many ways are there to put all the cards into the boxes so that this trick always works? (Two ways

are considered different if at least one card is put into a different box.)

65. On a circle are marked 999 points. How many ways are there to assign to each point one of the letters A, B, or C, so that on the arc between any two points marked with the same letter, there are an even number of letters differing from these two

66. On a train are riding 175 passengers and 2 conductors. Each passenger buys a ticket only after the third time she is asked to do so. The conductors take turns asking a passenger who does not already have a ticket to buy one, doing so until all passengers have bought tickets. How many tickets can the conductor who goes first be sure to sell?

67. Around a table are seated representatives of n countries (n greater than or equal to 2), such that if two representatives are from the same country, their neighbors on the right are from two different countries. Determine, for each n, the maximum number of representatives.

A person join a job at 20 yrs.First 3 years sal =10,000 p.a. Afterwards every year inc of 2,000 per year for 10 year. Then sal become const till retirement. at retirement avg sal is 25,000. ( thro’out career) what age he retires.?

Diamond\’s value is proportional to its weight2 .When the diamond broke wts of pieces in ratio 1:2:3;4:5.Total loss in value is 85,000.What is the value of the diamond twice the wt of the original diamond.

Two trains are traveling at 18kmph and are 60 km apart. There is fly in the train. It flies at 80kmph. It flies and hits the second train and then it starts to oscillate

between the two trains. At one instance when the two trains collide it dies.

Distance traveled by the fly when both trains collide is?

Two cars are 500 cm apart. each is moving forward for 100 cm at a velocity of 50 cm/s and receding back for 50 cm at 25 cm/s at what time they will collide with each other?

Answers to the questions

1) he got 10K for 13 years , 2k for 1 year . 4 k for 1 year…..20 k for 1 year and then 30K for , say, n years

so, (10X13 + ( 2+4+6+……+20) + 30Xn)/(n+13) = 25

=> n = 17 . hence, RETIREMENT AGE IS 20 + 13 + n = 50 YEARS

2 ) 450,000

let weight of the original diamond be 15k ( This number is the sum of the numbers in the ratio given ) ,so, it’s value would be 225k^2. Now, the broken diamond’s value adds upto 55k^2. So, loss of value is 170k^2 which is 85,000. This gives k^2 = 500.

We need (30k)^2 = 900k^2 = 900* 500 = 450,000

3) Dunno….I am getting some 400/3 kms as the answer..if that is the correct answer, i can explain how i got that..otherwise , it ‘s too boring to see that humongous solution

4 ) 14 seconds

SIMPLE –

the trains will meet at 60/(18+1 or 5/3 hr

distance trAvelled by fly = 80 x 5/3 or 400/3 km

each car moves forward (then backward) for 2 sec; in 4 sec, they cover 50 cm each;

they will together cover 300 cm in 12 sec. then, a 100 cm thrust from both ewill ensure that they collide! this will happen after another 2 sec

thus, 14 secs.

The ratio of Boys to Girls is 6:4. 60% of the boys and 40% of the girls take lunch in the canteen. What % of class takes lunch in canteen?

I think the answer for this should be 52%, Total Students 10x Students taking food in canteen = 3.6x + 1.6 x = 5.2 x

Hence 52%

==

>>>>>>>>>>>>>>>>ANSWERS>>>>>>>>>>>>>>>>>>>>>>>>>>>

Q1- X=6

let the committeees be A,B,C,D

consider each com as a square where exactly 1/3 of each square overlap with each other and eah 1/3 has 1 member for eg let C overlap with 1/3 A , 1/3 B and 1/2 D= 3 members

II’ly D with 1/3 A and 1/3 B =2 mem

and A with 1/3 B = 1mem

hence X=6

Q2— 2481 Sol Total num of num. between 3000 to 8000 are 5001. Of them number of num. with no digit in common == 5*9*8*7 = 2620

Thus total no. of no with atlest 2 digit in common = 5001 – 2620=2481.

Q3— -91(again want sol from U people)

Q4 – 80 sorry Q was in complete it say’s A closet has 5 pairs. Now solve. 5p4

Q5 – This time haripi is right 64 is the ans.

Q 6 –Haripi U are quite close to ans. , must have done some minor mistake well ans. is –11.

2) Answer 1400:

3000-8000

using P & C

2 digits repeating: The first digit filled in 10 ways ..other digit can be chosen in 9 ways.. 3rd one can be chosen in only one way..as it is repaeting…so 90 ways

the repeating digits can take 3 combinations ..3c2… therefore total number of ways is 90*3 =270

all 3 repeating…10 ways..

therfore between 3000 -4000 there are 280 numbers..

3000-8000 there will be 1400 numbers..

4) answer 16 ways…

divide shoe pairs into left and right. left pairs into 4 and right pairs into four

L1 L2 L3 L4 ——— R1 R2 R3 R4

YOU CAN CHOOSE 4 c 4 + 4c 4 +4c1 + 4c 2 +4c 3 = 16

i.e all 4 left + all four right + 1 left 3 right + 2 left 2 right + 3 left 1 right

5) its an infinite gp using a/(1-r) where r = 3/4 we get answer as 64. it is infinite GP hence sum = a/1-r where r=.75(16*.75=12 and so on)

= 16/.25=64

6)find the eqn: of teh line using first two coordinates.. then substitute values of x and 7 in that equation… answer x = 22. use the formulae x-x1/(x2-x1) = y-y1/(y2-y1) to form the line eq and sub y= 7

Ans : X= 11

7— m = 14 , using the arrangement

(1; 2; 3; 4) (5; 6; 7; (1; 2; 5; 6) (3; 4; 7;

(3; 4; 5; 6) (1; 3; 5; 7) (2; 4; 6; (1; 3; 6;

(2; 4; 5; 7) (1; 4; 5; (2; 3; 6; 7) (1; 4; 6; 7)

(1; 2; 7; (2; 3; 5; :

8— If n+1 is composite, then each prime divisor of (n+1)! is a prime less than n, which also divides n! and so does not divide n! + 1. Hence f(n) = 1. If n + 1 is prime, the same argument shows that f(n) is a power of n + 1, and in fact n + 1|n! + 1 by

Wilson’s theorem. However, (n + 1)^2 does not divide (n + 1)!, and thus f(n) = n + 1.

9 A 4000 cm^3

B 16

Assumption 30 cm is the heigth of the tank

9— If 32 discs are placed in an 8 *4 rectangle, they can all move up, left, down, right, up, etc. Game with 33 discs would stop. (Help me in the sol.).

10— Q is wrong, sorry.

11—It is necessary and sufficient that gcd (x, y) = 2^s for some

Non negative integer s. We show necessity by noting that gcd (p, q) = gcd (p, q – p), so an odd common divisor can never be introduced, and noting that initially gcd (1, 1) = 1.

As for sufficiency, suppose gcd (x, y) = 2^s. Of those pairs (p, q) from which (x, y) can be reached, choose one to minimize p+q. Neither p nor q can be even, else one of (p/2, q) or (p, q/2) is an admissible pair.

If p > q, then (p; q) is reachable from ((p + q)/2, q), a contradiction, similarly p A = 30, B = 120, C = 30

BDC = 90, DBC = 60, BCD = 30 degrees.

now, AB = BC = 1

so, DC = 1 * cos (30) = sqrt(3)/2 = 1.73 / 2

BD = 1 * sin (30) = 1/2

Now height of cone ACC’ = AD = AB + BD = 1 + 0.5 = 3/2

Radius of cone ACC’ = DC = sqrt(3)/2 (sorry, i couldn’t find the underoot sign on my keyboard )

Volume of cone ACC’ = 1/3 * pi * DC^2 * AD

= 1/3 * pi * (3/4) * (3/2)

Now let’s consider the inner cone.

Height of cone BCC’ = BD = 1/2

Radius of cone BCC’ = DC = sqrt(3)/2

Volume of BCC’ = 1/3 * pi * DC^2 * BD

So, volume formed by solid on revolution =

Volume of ACC’ – Volume of BCC’

= 1/3 * pi * DC^2 * AD – 1/3 * pi * DC^2 * BD

= 1/3 * pi * DC^2 * (AD – BD)

= 1/3 * pi * 3/4 * (3/2 – 1/2)

= 1/3 * pi * 3/4 * 1

= pi/4

Correct me if I am wrong.

13. k^2/2 +1/2

OR

Ans 5 let x & y be 1,2 or am i missing some thing?

min value of x^2+y^2=(k^2)/2

sol: (x+y)^2=k^2

x^2 + y^2 + 2*x*y = k^2

for (x^2 + y^2) to be min, 2*x*y should be max

this can happen only when x=y => 2*x*y = (k^2)/2

so (x^2 + y^2)=(k^2)/2

14. find it yaar, require some time

15. 93

16. A*(cos^2(pi/n))

17. 512

18. Use the formula

19. Trigo problem, requires a pen. The radius of the circle is 2.5 if the length is 4.

20. 120 degree

21. Hmmm…

22. 4.46 or 4.98

23. 4

27. put n=1 to generate (x,y, n) at will…

25. let D. ans x ques / min then the equn is

10x + 9(x-3)=201

soivn we get x=12

hence D.= 120 & S. = 81

28. 6

again requires pen/paper, so may be wrong…

It’s 19.5 for the side is square root of (25 + 12*(3^(1/2)))

28. Got it, after 30 minutes. The area is 19.5 square units(approx.)

How is this question going to be asked in CAT, and attempted?

Nawab, tell us the 2 minute solution…

30. 1998C2 -1998

though not sure

31. One triangle

or its generation 3a, 4a, 5a…

Q-33: 3^37=3*3^36=3*9^18=3*81^9=3*2^9=6*2^8=6*16^2=6*256=6*19

=114=>reminder is 35

Q-37: Ans. 20 of 50p , 15 of 25p and 50 of 10p coin’s

Q-38: (a-c)p/b-c males (b-a)p/b-c females

40: Ans:

since 3x+2y=26

i am assuming that x must be divisible by 3(correct me if i am wrong) and even

hence it can take vals 6,12,18,24 thus corres ponding x is 2,4,6,8 here we find that x=4 & corres y=7

yeilds the max area of 28

43. Answer = 2 * r * r * (pi / 3 – sqrt(3) / 4)

53: Ans:

of stu ans atleast 1 ques wrong= 20+5+13 1/3=38 1/3% =>

% of stu ans rite = 61 2/3% =37 ; tot no stu = 37*100 / 185/3 = 60

Q-63:

initial no of passengers in first class = 8x*5/6

initial no of passengers in 2nd class = 6x*11/12

initial no of passengers in 3rd class = 3x

cost of a ticket in 1st class = 9y

cost of a ticket in 2nd class = 12y

cost of a ticket in 3rd class = 26y

revenue 20x/3*9y = 60xy

revenue 11x/2*12y = 66xy

revenue 3x*26y = 78xy

tot revenue = 1326 = 204xy

=> revenue from 1st class = 60/204*1326 = Rs 390

hence choice B is the ans

Pagalguy:

f 7 planes are flying between 2 points and the slowest reaches the destination in 15 minutes and the fastest in 5 minutes, then which one of the following cannot be the average of the time taken by all 7 planes to fly the entire distance.

1. 9 2. 11 3. 12 4. 14

Without calculations we can say the answer is 14 as that is closest to the defining range 5 and 15.

If questions give none of these as an answer option, then we may have to calculate..

Shoot your shortcuts here…

Ambi

A has got 10 breads and B has got 6breads C has got none but he has some money with him. Now A, B and C divide the breads equally among themselves. C will divide the money he has with him among A and B in the ratio of the amount of bread given to C by them.

find the ratio

well my approach to the question would be

first of all calculate the amount of bread each of them will get after dividing equally

that would come out to be 13/3

that means A would give (10 – 16/3) to C

and B would give (6- 16/3) to C

so the ratio would be 14:2

Let’s say we want to find 14.25% of 3267.

What will 10% of 3267 be… 326.7

And 1%… obviously 32.67. Then what would 4% be… 128 for 32 and 2.68 for 0.67…, i.e. 130.6

Thus, 14% will be 326.7 + 130.6, i.e. 457.3

If I want an even more accurate answer, if 1% is 32.6, then 0.25% will be 1/4 of 32.6, i.e 8.15

14.25% of 3267 will be 465.4

Knowing reciprocal percentage equivalent, I should have thought of an even better factorisation as 14.28% – 0.03% and since 14.28% is nothing but 1/7, the answer can directly be found by dividing 3267 by 7, i.e. 466.7

Let’s see another example where I can save a lot of calculations.

If I have to find 4835/7280 is of what percentage and the alternatives to choose from, are

a. 59.6%

b. 63.8%

c. 66.4%

d. 71.4%

Just focus on denominator. 10% of the denominator would be 728. Thus, the answer will be definitely less than 70% (since 7* 10% i.e. 70% of the denominator will be more than 4900 i.e. more than the numerator) and also answer will be more than 60% (since 6*10% will be around 4360). 2/3 of 7280 will be 4860. Since the numerator is less than 4860, the answer choice has to be less than 2/3 or 66.66% and hence (c) is the obvious choice.

Take the chord as AB with centre C. Let O be the centre of the circle. COD is the perpendicular bisector of AB to the major arc. By the problem, AB = CD = 36.

Let the circle be of radius r. So, the lengths OD = OA = OB = r.

OC = CD – OD = 36-r.

In triangle COA (or COB for that matter) applying pythogoras theorem,

(36-r)^2 + 18^2 = r^2

Solving for r, we get r = 22.5.

oops… I didn’t look into that… sorry. I meant the bisector but missed the term somehow.

Hope that helps.

Regards,

Bharathi.

Let ABC be an equilateral triangle and D be a point outside it. The distances AD, BD and CD are 10, 10 and 18 units respectively. Find the side of the equi. triangle.

Is this the answer?

Consider a triangle ABC

let D be a point such that AD=BD=10 and CD=18.

Let CD cut AB at O.

Now focus on Triangles AOC and BOC.. It shouldnt be difficult to prove that they both are congruent triangles….

Thus angle AOC=angle BOC=90 degrees

Let CO=x and OD=18-x. Let AO=y

As angle BAC=60 deg hence CO=AO tan60 ie x=y.sqrt(3)

In traingle AOD, AD^2= OD^2+ AO^2

or 100 = (18-x)^2 + y^2

Replace x by y.sqrt(3)

Thus y =9.96 cm and hence AC = AO cos 60 = 19.92 or 20 cm

Also y can b 5.6 cm then AC = 11.2 cm…

Regards

A group of friends went on a holiday to a hill station. It rained for 13 days. But when it

rained in the morning, the afternoon was lovely. And when it rained in the afternoon, the

day was preceded by clear morning.

Altogether there were 11 very nice mornings and 12 very nice afternoons. How many days did

their holiday last?

Let the number of total mornings be M and the number of total afternoons be E

The wet mornings must be M-11 and the horrid afternoons are E-12

So, M-11+E-12=13 or M+E = 36

but M+E is one day so the number of days must be 18!

Which of the following day(s) can’t be the last day of a century? Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday.

Ans:

easiest one.

The last day of a century can not be Tuesday, Thursday or Saturday.

( hope everybody aware of calendar probs. 5317 – fri,wed,mon,sun alone be the last days of centuries)

Here it goes.

A normal year has 365 days whereas a leap year has 366 days. Every year which is divisible by 4 is called a leap year.

Also, every 4th century is a leap year but no other century is a leap year.

1 normal year = 365 days = 52 weeks + 1 day

1 leap year = 366 days = 52 weeks + 2 day

Thus, a normal year has 1 odd day whereas a leap year has 2 odd days.

100 years = 76 normal years + 24 leap years = 76*[52 weeks + 1 day] + 24*[52 weeks + 2 day] = (76*52) weeks + 76 days + (24*52) weeks + 48 days = 5200 weeks + 124 days = 5217 weeks + 5 days

i.e. 100 years contain 5 odd days

Similarly, 200 years contain 10 odd days

i.e. 3 odd days. 300 years contain 15 odd days

i.e. 1 odd days.

400 years contain (20+1) odd days i.e. 0 odd days.

Note that 400 years contain one more leap year.

Also, we have Sunday for 0 odd day, Monday for 1 odd day, Tuesday for 2 odd days, and so on… Thus, last day of first century is Friday. (5 odd days) Last day of second century is Wednesday. (3 odd days) Last day of third century is Monday. (1 odd days)

Last day of forth century is Sunday. (0 odd days)

Since the order is repeating in successive cycles, the last day of a century can not be Tuesday, Thursday or Saturday.

A ship went on a voyage.

After it had travelled 180 miles a plane statrted with 10 times the speed of the ship.

Find the distance when they meet from starting point.

200 miles

Let’s say the ship is travelling v mi/hr

and plane took t hours to meet the ship

Than, vt is the distance ship travelled after plane started

(10v)t = 10vt is the distance plane travelled.

So we have, vt + 180 = 10vt

or 9vt = 180

or vt = 20

Hence distance ==> 180 + 20 = 200 miles

But…. one more soln. with me.

By the time the plane flies 180 miles the ship would have travelled 18 miles.

180 + 18 = 198 miles

By the time the plane flies 18 miles the ship would have travelled 1.8 miles.

198 + 1.8 = 199.8 miles

By the time the plane flies 1.8 miles the ship would have travelled .18 miles.

199.8 + .18 = 199.98 miles

By the time the plane flies .18 miles the ship would have travelled .018 miles.

199.98 + .018 = 199.998 miles

By the time the plane flies .018 miles the ship would have travelled .0018 miles.

199.998 + .0018 = 199.9988

And so on, assuming the plane never tries to overtake the ship

speeds x and 10 x

rel dis = 180

rel speed = 10x – x = 9x

time = 180/9x = 20/x

Ans = Dis Travelled by plane = 10x * 20/x = 200 miles

Quote:

There are some chicken in a poultry. They are fed with corn. One sack of corn will come for 9 days. The farmer decides to sell some chicken and wanted to hold 12 chicken with him. He cuts the feed by 10% and sack of corn comes for 30 days. So initially how many chicken are there?

.9x – 30 days

1 x – 30*.9 days = 27 days for 12 chicken

= 9 days for t chicken

= 27 * 12 days for 1 chicken

= 27 * 12 / 9 days for t chicken

t = 27*12/9 = 36 chicken initially.

Quote:

There is an element which triplicates in every hour. Each of these 3

items inturn reproduce exactly 3 other items. If a single compund is kept in a

container at noon and the container is full by midnight. After how many hours is the container 1/3 full.

9 pm.or 9 hours (1/3 becomes 3/3 in 3 hours – therefore 12-3 = 9) – not very sure – have to check.

Quote:

100 Kg. Potatoes with 98% water content are dried in an oven. The percentage of water decreases to 50 %. What is the weight of potatoes now.

98 kg + 2kg of solid matter of water becomes 2 kg of water + 2 kg of solid matter (2 = 50% of 4) (assuming 50% of original weight – if it is 50% of the weight of water – then it will be 49kg water + 2kg solid = 51kg – but then the wording should have been “The percentage of water decreases by 50 %” )

Quote:

There are n Railway stations. Ticket facility is 10available between every

two stations. Recently, m new stations are bulit so that 42 new tickets

are to be printed. How many stations were there? How many are newly

constructed.

For the m new stations you will need to print 42 new tickets = 21 new tickets one way.

Now, 21 = trains between 1 each of n stations and 1 of m stations = m*n + trains between each of the m new stations = mC2

21 = m*n+mC2 = m(2n + m-1)/2

3*7 = m(2n+m-1)/2

Taking m = 3

7 = (2n+3-1)/2

14 = 2n + 2

n = 6

If we take m = 7, (2n+6) = 6 => n = 0

Therefore, either there were no stations initially and 7 new stations were added or 6 originally, 3 new were added.

36 chickens

11 pm

51 kg

1(part)*9*x= 0.9(part)*12*30

therfore x=36 (chicks)

1/3 becomes 3/3 in 1 hr) – therefore 12-1 = 11 ==> 11pm.

n(n-1) is the no. of tickets available between n no. of stations.

therefor n1(n1-1) – n(n-1) =42

9*8 – 6*5 =42.

n=6, n1 =9. 3 new stations.

1. The street of a city are arranged like the lines of a chessboard , there are m street running north and south and n east and west . Find the no. ways in which a man can travel from N.W to the S.E corner, going by the shortest possible distance.

2. How many different arrangement can be made out of the letters in the ex-pression a^3b^2c^4 when written at full length?

Ans. 1260.

3. How many 7-digit numbers exist which are divisible by 9 and whose last but one digit is 5?

4. You continue flipping a coin until the number of heads equals the number of tails. I then award you prize money equal to the number of flips you conducted .How much are you willing to pay me to play this game?

5. Consider those points in 3-space whose three coordinates are all nonnegative integers, not greater than n. Determine the number of straight lines that pass through n of these points.

6 Four figures are to be inserted into a six-page essay, in a given order. One page may contain at most two figures. How many different ways are there to assign page numbers to the figures under these restrictions?

7. How many (unordered) pairs can be formed from positive integers such that, in each pair, the two numbers are coprime and add up to 285?

8. ( 1+ x) ^ n – nx is divisible by

A. x B. x.x C. x.x.x. D. None of these

9. The root of the equation (3-x)^4 + (2-x)^4 = (5-2x)^4 are

a. ALL REAL B. all imaginary C. two real and 2 imaginary D. None of these

10. The greatest integer less than or equal to ( root(2)+1)^6 is

A. 196 B.197 C.198 D.199.

11. How many hundred-digit natural numbers can be formed such that only even digits are used and any two consecutive digits differ by 2?

12. If x1 , x2, x3 are the root of x^3-1=0 , then

A. x1+x2+x3 not equal to 0 B. x1.x2.x3 not equal to 1 C.(x1+x2+x3)^2 = 0 D. None of these

13. How many different ways are there to arrange the numbers 1,2,…,n in a single row such that every number, except the number which occurs first, is preceded by at least one of its original neighbours?

14. There are N people in one room. How big does N have to be until the probability that at least two people in the room have the same birthday is greater than 50 percent? (Same birthday means same month and day, but not necessarily same year.)

15. A 25 meter long wound cable is cut into 2 and 3 meter long pieces. How many different ways can this be done if also the order of pieces of different lengths is taken into account?

16. You are presented with a ladder. At each stage, you may choose to advance either one rung or two rungs. How many different paths are there to climb to any particular rung; i.e. how many unique ways can you climb to rung “n”? After you’ve solved that, generalize. At each stage, you can advance any number of rungs from 1 to K. How many ways are there to climb to rung “n”?

17. Find the no. of rational number m/n where m ,n are relatively prime positive no. satisfying m 5) whose centers form an equilateral triangle. Prove that m = n = 6, and find the angles of ABC.

25. The area of triangle formed by the point (p,2-2p) , (1-p,2p) and (-4-p,6-2p) is 70 units. How many integral values of p are possible.?

A. 2 B. 3 C. 4 D. None of these

26. In a park, 10000 trees have been placed in a square lattice. Determine the maximum number of trees that can be cut down so that from any stump, you cannot see any other stump. (Assume the trees have negligible radius compared to the distance between adjacent trees.)

A. 2500 B.4900 C.6400 D. none of these.

27. A certain city has a circular wall around it, and this wall has four gates pointing north, south, east and west. A house stands outside the city, three miles north of the north gate, and it can just be seen from a point nine miles east of the south gate. The problem is to find the diameter of the wall that surrounds the city.

28. Income of A,B and C are in the ratio 7:10:12 and their expenses in the ratio 8:10:15 . If A saves 20% of his income then B’s saving is what % more/less than that of C’s

A.100% more B. 120% more C. 80% less D. 40% less

29. A triangle ABC has positive integer sides, angle A = 2 angle B and angle C > 90. Find the minimum length of the perimeter of ABC.

30. We have k identical mugs. In an n-storey building, we have to determine the highest floor from which, when a mug is dropped, it still does not break. The experiment we are allowed to do is to drop a mug from a floor of our choice. How many experiments are necessary to solve the problem in any case, for sure? [/glow][/color][/font]

31. The side lengths of a triangle and the diameter of its incircle are 4 consecutive integers in an arithmetic progression. Find all such triangles.

32. We have a 102 * 102 sheet of graph paper and a connected figure of unknown shape consisting of 101 squares. What is the smallest number of copies of the figure, which can be cut out of the square?

33. Between points A and B there are two railroad tracks. One of them is straight and is 4 miles long. The other one is the arc of a circle and is 5 miles long. What is the radius of curvature of the curved track?

34. Number of ordered pair of integer x^2+6x+y^2 = 4 is. A.2 b.4 c.6 d.8.

35. 100 cards are numbered 1 to 100 (each card different) and placed in 3 boxes (at least one card in each box). How many ways can this be done so that if two boxes are selected and a card is taken from each, then the knowledge of their sum alone is always sufficient to identify the third box?

36. A cube is divided into 27 pairwise congruent smaller cubes. Find the maximum number of small cubes that can be stabbed by a straight line.

37. Suppose that you have a table with 8 rows and 8 columns and that the numbers from 1 to 64 are placed in the table in such a way that all the rows and columns add up to the same number. What is this number?

38 A certain shade of gray paint is obtained by mixing 3 parts of white paint with 5 parts of black paint. If 2 gallons of the mixture is needed and the individual colors can be purchased only in one-gallon or half- gallon cans, what is the least amount of paint, in gallons, that must be purchased in order to measure out the portions needed for the mixture?

(A) 2 (B) 2 .5 (C) 3 (D) 3.5 (E) 4

39. What is the least number of digits (including repetitions) needed to express 10^100 in decimal notation?

(A) 4 (B) 100 (C) 101 (D) 1,000 (E) 1,001

40 You are at a track day at your local racecourse in your new Porsche. Because it’s a crowded day at the track, you are only allowed to do two laps. You haven’t driven your car at the track yet, so you took the first lap easy, at 30 miles per hour. But you do want to see what your ridiculous sports car can do. How fast do you have to go on the second lap to end the day with an average speed of 60 miles per hour?

41. A farmer sold 10 sheep at a certain price and 5 others at Rs. 50 less per head : the sum he received for each lot was expressed in rupee by the same 2 digits: find the prices per sheep.

42. If A tell B , that he has thought of a 3 digit no. , in such a way that the sum of all of its digit happens to be a prime no. If based on this information only B tries to find the no. , what is the probabilities that she will find the prime no. in the first guess .

43. The area of intersection of 2 circular discs each of radius r and with the boundary of each disc passing through the center of the other is.

44. An acrobat thief enters an ancient temple, and finds the following scenario:

1. The roof of the temple is 100 meters high.

2. In the roof there are two holes, separated by 1 meter.

3. Through each hole passes a single gold rope, each going all the way to the floor.

4. There is nothing else in the room.

The thief would like to cut and steal as much of the ropes as he can. However, he knows that if he falls from height that is greater than 10 meters, he will die. The only thing in his possession is a knife.

How much length of rope can the acrobat thief get?

45. A 25 meter long wound cable is cut into 2 and 3 meter long pieces. How many different ways can this be done if also the order of pieces of different lengths is taken into account?.

46. A gang of 17 pirates steal a sack of gold coins. When the start dividing the loot among them there was 3 coin left. They start fighting for the 3 left over coins and a pirates was killed. They decided to re-divided the coins, but again there was 10 coin left over. Again they fight and another pirates was killed. However they were third time lucky as this time loot was equally distributed. Now tell the least no. of coin satisfying above condition.

47. The coefficient of x^43 in the product (x-2)(x-5)(x- …….(x-131) is

A. 3087 B.4462 C.5084 D.2926

48. Find all a, b ,c such that the roots of x^3+ax^2+bx-8=0

49. A can hit a target 4 times in 5 shots; B 3 times in 4 shots ; and C 2 times in 3 shots. They all fire shot , find the probabilitiy that 2 shots at least hit.?

Ans. 6/13

50. ABC is an isosceles triangle with AC = BC . The median AD and BE are perp. To each other and intersect at G . If GD = a unit , find the area of the quadrilateral CDGE.

51. A regular octagon with sides 1 unit long is inscribed in a circle . Find the radius of the circle.

52 The pages of a report are numbered consecutively from 1 to 10. If the sum of the page numbers up to and including page number x of the report is equal to one more than the sum of the page numbers following page number x, then x =

(A) 4 (B) 5 (C) 6 (D) 7 (E) 8

53. Two urns contain the same total numbers of balls, some blacks and some whites in each. From each urn are drawn n balls with replacement, where n >= 3. Find the number of drawings and the composition of the two urns so that the probability that all white balls are drawn from the first urn is equal to the probability that the drawing from the second is either all whites or all blacks.

54. Two people agree to meet at a given place between noon and 1 p.m. By agreement, the first one to arrive will wait 15 min for the second, after which he will leave. What is the probability that the meeting actually take place if each of them selects his moment of arrival at random during 12 noon to 1 p.m?

55. A positive no n, not exceeding 100 is chosen in such a way that if n is less than or equal to 50, then probabilities of choosing n is 10 and if n > 50 then it is 3p. What is the probability of choosing a square?

56. What is the greatest area of a rectangle the sum of whose 3 sides is equal = 100.

Ans. 1250 .

57. A plane figure consists of a rectangle and an equilateral triangle constructed on one side of the rectangle . How large is the area of that figure in the term of perimeter.

Ans. 6+ sqrt(3)/132 p^2.

58. A reservoir is shaped like a regular triangle . A ferry boat goes from point A to point B both located on the bank . A cyclist who has to get form A to B can use the ferry boat or to ride along the bank . hat is the least ratio between the speed of cyclist and the speed of the boat at which the use of the boat does not give any gain in time, the location of the point A and B being arbitrary ?

Ans. 2.

59. Find the greatest volume of the cylinder inscribed in the given cone.

Ans. V(R/3) = 4/27 * pie H*R*R

60. In a party with 1982 persons, among any group of four there is at least one person who knows each of the other three. What is the minimum no. of people in the party who know everyone else.

61. In a party with 1982 persons, among any group of four there is at least one person who knows each of the other three. What is the minimum no. of people in the party who know everyone else.

62 A chord PQ is drawn on a circle. If the length of PQ is equal to the radius of the circle, then what is the probability that any line drawn at random from point P through the circle is smaller than PQ A. 1/2 B. 1/3 C. 2/3 D. 3/5.

63 Between 2 station the first, second and the third class fares were fixed in the ratio 8:6:3, but afterwards the first class were reduced by 1/6 and second class by 1/12. In a year no. of first second and third class passenger were in ratio 9:12:26 and the money at the booking counter was 1326. How much was paid by the first class passenger? A. 320 B. 390 C.420 D. None. Of these.

64 . A magician has one hundred cards numbered 1 to 100. He puts them into three boxes, a red one, a white one, and a blue one, so that each box contains at least one card. A member of the audience selects two of the three boxes, chooses one card from each, and announces the sum of the numbers on the chosen cards. Given this sum, the magician identifies the box from which no card has been chosen. How many ways are there to put all the cards into the boxes so that this trick always works? (Two ways are considered different if at least one card is put into a different box.)

65. On a circle are marked 999 points. How many ways are there to assign to each point one of the letters A, B, or C, so that on the arc between any two points marked with the same letter, there are an even number of letters differing from these two?

66. On a train are riding 175 passengers and 2 conductors. Each passenger buys a ticket only after the third time she is asked to do so. The conductors take turns asking a passenger who does not already have a ticket to buy one, doing so until all passengers have bought tickets. How many tickets can the conductor who goes first be sure to sell?

67. Around a table are seated representatives of n countries (n greater than or equal to 2), such that if two representatives are from the same country, their neighbors on the right are from two different countries. Determine, for each n, the maximum number of representatives.

68. 98 points are given on a circle. Maria and Joe take turns drawing a segment between two of the points which have not yet been joined by a segment. The game ends when each point has been used as the endpoint of a segment at least once. The winner is the player who draws the last segment. If Joe goes first, who has a winning strategy?

69. A computer screen shows a 98 * 98 chessboard, colored in the usual way. One can select with a mouse any rectangle with sides on the lines of the chessboard and click the mouse button: therefore, the colors in the selected rectangle switch (black becomes white, white becomes black). Find, the minimum number of mouse clicks needed to make the chessboard all one color.

70. A farmer has four straight pieces of fencing: 1, 2, 3, and 4 yards in length. What is the maximum area he can enclose by connecting the pieces?

71. Somewhere in Northern Asia, groups of 20 man were planning a special group suicide this year. Each of the them will be placed in a random position along a thin, 100 meter long plank of wood which is floating in the sea. Each man is equally likely to be facing either end of the plank. At time t=0, all of them walk forward at a slow speed of 1 meter per minute. If a man bumps into another man, the two both reverse directions. If a man falls off the plank, he drowns. What is the longest time that must elapse till all the man have drowned?

72. I have chosen a number from 1 to 144, inclusive. You may pick a subset (1, 2, .. 144), i.e. U can frame any subset based on AP, GP, or any other thing and then ask me whether my number is in the subset. An answer of “yes” will cost you 2 dollars, an answer of “no” only 1-dollar. What is the smallest amount of money you will need to be sure to find my number?

73. The side lengths of a triangle and the diameter of its incircle are four consecutive integers in an arithmetic progression. Find all such triangles.

74. A 10-digit number is said to be interesting if its digits are all distinct and it is a multiple of 11111. How many interesting integers are there?

75. Two matching decks have 36 cards each; one is shuffled and put on top of the second. For each card of the top deck, we count the number of cards between it and the corresponding card of the second deck. What is the sum of these numbers?

76. A cube of side length n is divided into unit cubes by partitions (each partition separates a pair of adjacent unit cubes). What is the smallest number of partitions that can be removed so that from each cube, one can reach the surface of the cube without passing through a partition?

77. A room has its dimension as 4 ,5 and 6 mt. An ant wants to go from one corner of the room to the diagonally opposite corner. The minimum distance it has to travel is

A.10.1 B. 10.8 C. 10.9 D. 11.2

78. A rumor began to spread one day in a town with a population of 100,000. Within a week, 10,000 people had heard this rumor. Assuming that the rate of increase of the number of people who have heard the rumor is proportional to the number who have NOT yet heard it, how long will it take until half of the population of the town has heard the rumor? A. 44 B.46 C.45 D. none of these

79. A camel must travel 15 miles across a desert to the nearest city. It has 45 bananas but can only carry 15at a time. For every mile camel walks, it needs to eat a banana. What is the maximum number of bananas that can transport to the city? A. 10 B.8 C. 15 D. none of these

80. So far this basketball season, all of Siddhart points have come from two- point and three point field goals. He had scored 43 points. He has made one more than twice as many three pointers as two pointers. How many of each kind of field goal has Siddhart made?

81. Let g (t)=9t^4+6t^2+2. For which value of t is this function a minimum?

82. Consider any two-digit number whose digits are not zero and are not the same. What is the greatest integer that divides evenly the difference between the square of the number and the square of the reverse?

ANS Largest difference = 91^2 – 19^2 = 7920 Hence, the greatest integer is 7920.

83. What is the maximum number of Friday the thirteenths that can occur in any given year?

84. What letter is in the 150th entry of the pattern ABBCCCDDDD……?

85. Tanisha and Richa had lunch at the mall. Tanisha ordered three slices of pizza and two colas. Richa ordered two slices of pizza and three colas. Tanisha’s bill was Rs60.0, and Rachel’s bill was Rs52.5. What was the price of one slice of pizza? What was the price of one colon?

86. An architect plans a room to be 14m x 30m. He wishes to increase both dimensions by the same amount to obtain a room with 141 sq. metres more area. By how much must he increase each dimension?

Ans 3/2, -47/2

87. A geometry teacher drew some quadrilaterals on the chalkboard. There were 5 trapezoids, 12 rectangles, 5 squares, and 8 rhombuses. What is the least number of figures the teacher could have drawn?

Ans 20

88. Given an n x n square board, with n even. Two distinct squares of the board are said to be adjacent if they share a common side, but a square is not adjacent to itself. Find the minimum number of squares that can be marked so that every square (marked or not) is adjacent to at least one marked square.

89. A painted wooden cube, such as a child’s block, is cut into twenty-seven equal pieces. First the saw takes two parallel and vertical cuts through the cube, dividing it into equal thirds; then it takes two additional vertical cuts at 90 degrees to the first ones, dividing the cube into equal ninths. Finally, it takes two parallels and horizontal cuts through the cube, dividing it into twenty-seven cubes. How many of these small cubes are painted on three sides? On two sides? On one side? How many cubes are unpainted?

90. It was claimed that the shepherd was the shepherd of 2000 sheep. The shepherd exclaimed, “I am not the shepherd of two thousand sheep!” Pointing to his flock, he added, “If I had that many sheep plus another flock as large as that, then again half as many as I have out there, I would be the shepherd of two thousand sheep.” How many sheep were in the shepherd’s flock?

91. Leon, who is always in a hurry, walked up an escalator, while it was moving, at the rate of one step per second and reached the top in 20 steps. The next day he climbed two steps per second (skipping none), also while it was moving, and reached the top in thirty-two steps. If the escalator had been stopped, how many steps did the escalator have from the bottom to the top?

92. A, B and C were asked to sell fun-fair tickets priced at $10 each. A sold 1/4 of them. B and C sold the remaining tickets in the ratio 5:7. A received $90 less than C.

What fraction of tickets were sold by C? b) How many tickets did the 3 girls sell altogether?

93.If 500ml of popcorn and 1 box of potato chips cost $1.64, and 250ml of popcorn and 2 boxes of potato chips cost $1.99, and 250ml of popcorn is half the price of 500ml of popcorn, then how much is one box of popcorn?

94.There are three circles, they share a similar area. The similar area is 1/10 of the biggest circle, 1/6 of the second biggest circle, and half of the smallest circle. What is the ratio of the circles?( biggest, second biggest, smallest)

95. Sally and Jeff took 37 hours to complete a whole project. If Sally had worked 5 hours less and Jeff had worked 6 hours more, Jeff would still have put in 2 more hours than Sally. How many hours did Sally put in for the project? (Assume that Sally and Jeff worked separately on their own project.)

96. Mrs Lee purchased 240 rings and some watches. The number of rings was more than the number of watches by 20% of the total number of both items bought. She sold all the watches at $36 each. From the total sale of the rings and the watches, she earned $2240 from her total sale. If each ring was sold at 25% less than the selling price of each watch,

a) find the no. of watches purchased by Mrs Lee, and

b) find the total cost price of all the rings and watches

97. We play the following game with an equilateral triangle of n(n+1)=2 pennies (with n pennies on each side). Initially, all of the pennies are turned heads up. On each turn, we may turn over three pennies which are mutually adjacent; the goal is to make all of the pennies show tails. For which values of n can this be achieved? I. 17 II. 7 III. 8 IV. 6

A. all of the above B. none of the above

C. for more than 2 of the above including IV D. Exactly 2 of them.

98. In a certain town, the block are rectangular with stress running East-West, the avenues North-South. A man wishes to go from one corner to another m block East, n block North. In how many ways the shortest path can be achieved.

99. Two players take turns drawing a card at random from a deck of four cards labeled 1,2,3,4. The game stops as soon as the sum of the numbers that have appeared since the start of the game is divisible by 3, and the player who drew the last card is the winner. What is the probability that the player who goes first wins?

100. We are given 1997 distinct positive integers, any 10 of which have the same least common multiple. Find the maximum possible number of pairwise coprime numbers among them.

Ans 9.

101. A rectangular strip of paper 3 centimeters wide and of infinite length is folded exactly once. What is the least possible area of the region where the paper covers itself?

A. 4.5 B. 4 C. 3.45 D. 5.4

102. A company has 50000 employees. For each employee, the sum of the numbers of his immediate superiors and of his immediate inferiors is 7. On Monday, each worker issues an order and gives copies of it to each of his immediate inferiors (if he has any). Each day thereafter, each worker takes all of the orders he received on the previous day and either gives copies of them to all of his immediate inferiors if he has any, or otherwise carries them out himself. It turns out that on Friday, no orders are given. The least employees who have no immediate superiors are. A. 97 B. 518 C.216 D. none of these.

103.The numbers from 1 to 37 are written in a line so that each number divides the sum of the previous numbers. If the first number is 37 and the second number is 1, what is the third number?

104. The centre of the circumcircle of triangle ABC with angle C = 60 is O and its radius is 2 . Find the radius of the circle that touches AO , BO and the minor arc AB.

105 . ABC is an equilateral triangle in which B is extended to K such that CK = ½ BC. Find AK^2 * 1/ CK^2

A. 3 B. 7 C. 5 D. 6

106. Let S be the set of prime numbers bigger than 100 but smaller than 150. Let n be the product of all the numbers in the set S . Which of the following statement is FALSE?

A. 5 does not divide n B. 17 divide n. C. n is an odd number D. n is a product of distinct primes.

107. A cube of side ‘a’ is converted into a sphere by adding clay on all the faces of the cube. The minimum volume of clay required is

Ans. a^3( pie * sqrt(3)/2 – 1) .

108. The product of all integer from -129……….+130, ends inclusive , then which of the following values is closet to the result? A. 65^65 B. 9^2 C. -65^65 20^12.

109. Four people, A, B, C, and D, are on one side of a bridge, and they all want to cross the bridge. However, it’s late at night, so you can’t cross without a flashlight. They only have one flashlight. Also, the bridge is only strong enough to support the weight of two people at once. The four people all walk at different speeds: A takes 1 minute to cross the bridge, B takes 2 minutes, C takes 5 minutes, and D takes 10 minutes. When two people cross together, sharing the flashlight, they walk at the slower person’s rate. How quickly can the four cross the bridge?

110. A cube is divided into 27 pairwise congruent smaller cubes. Find the maximum number of small cubes that can be stabbed by a straight line.

ANS:

.Four figures are to be inserted into a six-page essay, in a

given order. One page may contain at most two figures. How many

different ways are there to assign page numbers to the figures under

these restrictions?

Ans:

consider the case that one page may contain 1 fig the no of ways is 6c4

consider the case wher 1 page only can contain 2 fig the 6c3

consider 2 pages can contain 2 figures then 6c2

Ans:6c4+6c3+6c2

8. ( 1+ x) ^ n – nx is divisible by

A. x B. x.x C. x.x.x. D. None of these

Ans:

guess it is none of these as (1+x)^n is never div by x or am i wrong

12. If x1 , x2, x3 are the root of x^3-1=0 , then

A. x1+x2+x3 not equal to 0 B. x1.x2.x3 not equal to 1 C.(x1+x2+x3)^2 = 0 D. None of these

Ans: A as x1=x2=x3=1

15. A 25 meter long wound cable is cut into 2 and 3 meter long pieces.

How many different ways can this be done if also the order of pieces

of different lengths is taken into account?

Ans: no of 3 meter pieces 2meter pieces no of arrangments

1 11 12c1

3 8 11c3

5 5 10c5

7 2 9c2

28. Income of A,B and C are in the ratio 7:10:12 and their expenses in the ratio 8:10:15 . If A saves 20% of his income then B’s saving is what % more/less than that of C’s

A.100% more B. 120% more C. 80% less D. 40% less

Ans: A

7x-8y=1/5(7x)=> 8y= 4/5(7x) => 10y=7x

=> b saves 3x & c saves 1.5x hence the ans

30. We have k identical mugs. In an n-storey building, we have to

determine the highest floor from which, when a mug is dropped, it still

does not break. The experiment we are allowed to do is to drop a mug

from a floor of our choice. How many experiments are necessary to

solve the problem in any case, for sure?

Ans: log(n)

worst case senario of binary search or is thre any other faster search

happy solving

37. Suppose that you have a table with 8 rows and 8 columns and that

the numbers from 1 to 64 are placed in the table in such a way that all

the rows and columns add up to the same number. What is this number?

Ans:260

as sum of 1 to 64= 2080 there r 8 rows & the sum of each row is the same

and the sum of all the rows is 2080 hence the sum of each row is 2080/8=260

38 A certain shade of gray paint is obtained by mixing 3 parts of white

paint with 5 parts of black paint. If 2 gallons of the mixture is needed

and the individual colors can be purchased only in one-gallon or half-

gallon cans, what is the least amount of paint, in gallons, that must

be purchased in order to measure out the portions needed for the mixture?

(A) 2 (B) 2 .5 (C) 3 (D) 3.5 (E) 4

Ans: E 4 gallons

for 2 gallons of grey shade we need 3/4 of white and 5/4 of black since the min

unit thet can be purchased is 1/2 we need to by 3/2 of W and 5/2 of B hence

4 units of paint totally

39. What is the least number of digits (including repetitions) needed

to express 10^100 in decimal notation?

(A) 4 (B) 100 (C) 101 (D) 1,000 (E) 1,001

Ans: C 101

as 10^n has n+1 digits

40 You are at a track day at your local racecourse in your new Porsche.

Because it’s a crowded day at the track, you are only allowed to do two

laps. You haven’t driven your car at the track yet, so you took the

first lap easy, at 30 miles per hour. But you do want to see what your

ridiculous sports car can do. How fast do you have to go on the second

lap to end the day with an average speed of 60 miles per hour?

Ans: it is impossible to do so.

42. If A tell B , that he has thought of a 3 digit no. , in such a way

that the sum of all of its digit happens to be a prime no. If based on

this information only B tries to find the no. , what is the probabilities

that she will find the prime no. in the first guess .

Ans:1/58

sum of the nos is 2 using 1 1 0= 2 ways, 2 0 0=1way =3 ways

3 using 3 0 0= 1, 1 2 0 =4, 1 1 1 =1 =6ways

5 using 1 0 4= 4, 2 0 3 =4, 1 1 3=3 ,1 2 3=6, 2 2 1=3,5 0 0=1 21ways

7 using 1 0 6=4,2 0 5=4,3 0 4=4,7 0 0=1,1 1 5=3,1 2 4=6,1 3 3=3,2 2 3 =3 =28 ways

hence totally 58 ways hence the ans

did i miss any combination

this method is time consuming r there any shortcut

.A B C have certain mangoes with them. B has 10% less mangoes than A & C 20% less than A.By what % is the no. of mangoes with B more than those with C

2.the price of sugar decreased by 20% & then increased by 50%.by what percentage should a housewife now increse or reduce her consumption so that the expenditure on sugar remains the same.

3.the indian cricket team played 25 ODI in a particular season in a year & won 40% of their matches.A new coach was brought in who wanted a successs rate of 75% of the matches played by the end of the year.how many minimum matches more should be played so as to achieve a the target

4.the price of an item went up by 25% & the family decided to reduce its consumption so that the total expenditure would increse by only 8% as compared to the previous expenditure if 25 kg of the item was consumed previously then how many kg of the item would be consumed now.

5. a salesman used to get 8%on the total sales as commission under a new policy he now gets a fixed amount Rs.2000 & 5% commission on any amount of salesabove Rs.10000.the salesman thus got Rs 540 more this month.what were his total sales for this month

6.the price of an item increased by by the same percentage over the last 4 weeks.If at the beginning it was 512 /gm & in the end it became 1250/gm find the percentage increase everyweek.

7.the rate of inflation of a country is 600% what would be the cost of an item 4 years from now if its present cost is Rs. 125 & the rate of inflation remained unchanged throughout.

ANS:

1)Let A has 100 mangoes

then B will have 90 and C will have 80 mangoes

therefore % of mangoes with B more than those with C = (90-80)*100/80=12.5%

2) Net change in prize of sugar = -20+50+(-20)(50)/100=20%

in order to keep the expenditure same she has to reduce her consumption by

100-(100/1.2)= 17.66%

3) 40% of 25 = 10

75% of 60 = 45.

therefore 35 matches has to b played .

4) previous expenditure = 25 kg

let the prize per kg = 4

therefore total cost = 100

prize went up by 25%…….prize per kg = 4.25

if the total expenditure increases by 8% only instead of 25%

therefore total cost =108

consumption = 108/4.25 = 25.4 Kg

Quote:

2.the price of sugar decreased by 20% & then increased by 50%.by what percentage should a housewife now increse or reduce her consumption so that the expenditure on sugar remains the same.

my ans is

Let price of sugar be 100 then current pice = first 80 & then 120

by % table in pagal neha %tables cons must decrease by 16.66%

Quote:

3.the indian cricket team played 25 ODI in a particular season in a year & won 40% of their matches.A new coach was brought in who wanted a successs rate of 75% of the matches played by the end of the year.how many minimum matches more should be played so as to achieve a the target

easy way

its a simple alligation problem 4 those who dont knw this is how u approach it

40% u have won till now & have to will 100% matches frm now on till u have won 75% overall

40 100

75

25 35( u cross subtract there fore the ratio is 25:35

=> u have to win next 35 matches.)

Quote:

4.the price of an item went up by 25% & the family decided to reduce its consumption so that the total expenditure would increse by only 8% as compared to the previous expenditure if 25 kg of the item was consumed previously then how many kg of the item would be consumed now

let it go up by 25% then cons has to dec by 20% to maintain same price

cons = 20 kg but rise of 8% can be absorbed by family so 8% of 20 =1.6

=> consumption = 21.6kg

Quote:

5. a salesman used to get 8%on the total sales as commission under a new policy he now gets a fixed amount Rs.2000 & 5% commission on any amount of salesabove Rs.10000.the salesman thus got Rs 540 more this month.what were his total sales for this month

.08x+540=.05(x-10000)+2000

.03x+540=2500

.03x=1960

=>arnd 65K

Quote:

6.the price of an item increased by by the same percentage over the last 4 weeks.If at the beginning it was 512 /gm & in the end it became 1250/gm find the percentage increase everyweek.

x^4 * 512= 1250

find x

ps: is there ne easy way to solve these kinda probs i personally wund not solve it until i dunno ne other probs & that happens all the time

Quote:

7.the rate of inflation of a country is 600% what would be the cost of an item 4 years from now if its present cost is Rs. 125 & the rate of inflation remained unchanged throughout.

ans is 6^4*125=1296*125

1.11.11%

2.16.66%

3.35

4.21.6kg

5.20800

6.25%

7.125*7*7*7*7

=====

Let ABC be an equilateral triangle and D be a point outside it. The distances AD, BD and CD are 10, 10 and 18 units respectively. Find the side of the equi. triangle.

Consider a triangle ABC

let D be a point such that AD=BD=10 and CD=18.

Let CD cut AB at O.

Now focus on Triangles AOC and BOC.. It shouldnt be difficult to prove that they both are congruent triangles….

Thus angle AOC=angle BOC=90 degrees

Let CO=x and OD=18-x. Let AO=y

As angle BAC=60 deg hence CO=AO tan60 ie x=y.sqrt(3)

In traingle AOD, AD^2= OD^2+ AO^2

or 100 = (18-x)^2 + y^2

Replace x by y.sqrt(3)

Thus y =9.96 cm and hence AC = AO cos 60 = 19.92 or 20 cm

Also y can b 5.6 cm then AC = 11.2 cm…

Regards

Arcade

Precisely… that was it!

Now, CO is the altitude of triangle ABC and OD is the median ( and altitude ) of the triangle ABD.

If a is the side of the equilateral triangle, then

CO = alt = [sqrt(3)/2] * a

OD = 18 – alt

In triangle, ABD,

AD^2 + BD^2 = 2 (OD^2 + OB^2)

OB=a/2 (since equilateral)

This gives the solution a=9*sqrt(3) (+/-) sqrt(19) which comes to 19.9 / 11.2

—————————————————————————————Quantitative ability

[50 questions]

Q. Let A and B be two solid spheres such that the surface area of B is 300% higher than the surface area of A. The volume of A is found to be k% lower than the volume of B. The value of k must be

1. 85.5 2. 92.5 3. 90.5 4. 87.5

Soln. (4) — The surface area of a sphere is proportional to the square of the radius.

Thus, (S. A. of B is 300% higher than A)

The volume of a sphere is proportional to the cube of the radius.

Thus,

Or, VA is less than B i.e. 87.5%

Q. A test has 50 questions. A student scores 1 mark for a correct answer, –1/3 for a wrong answer, and –1/6 for not attempting a question. If the net score of a student is 32, the number of questions answered wrongly by that student cannot be less than

1. 6 2. 12 3. 3 4. 9

Soln. (3) — Let the number of correct answers be ‘x’, number of wrong answers be ‘y’ and number of questions not attempted be ‘z’.

Thus, x + y + z = 50 … (i)

And

The second equation can be written as,

6x – 2y – z = 192 … (ii)

Adding the two equations we get,

Since, x and y are both integers, y cannot be 1 or 2. The minimum value that y can have is 3.

Q. The sum of 3rd and 15th elements of an arithmetic progression is equal to the sum of 6th, 11th and 13th elements of the same progression. Then which element of the series should necessarily be equal to zero?

1. 1st 2. 9th 3. 12th 4. None of the above

Soln. (3) — If we consider the third term to be ‘x”

The 15th term will be (x + 12d)

6th term will be (x + 3d)

11th term will be (x + 8d) and 13th term will be (x + 10d)

Thus, as per the given condition, 2x + 12d = 3x + 21d.

Or x + 9d = 0

x + 9d will be the 12th term.

Q. When the curves y = log10x and y = x–1 are drawn in the x–y plane, how many times do they intersect for values ?

1. Never 2. Once 3. Twice 4. More than twice

Soln. (2) — For the curves to intersect,

Thus,

This is possible for only one value of x (20 and q>0. If Shepard had nine dozen goats at the end of year 2002, after making the sales for that year, which of the following is true?

1. p = q 2. p q 4. p = q/2

Soln. (3) — The number of goats remain the same.

If the percentage that is added every time is equal to the percentage that is sold, then there should be a net decrease. The same will be the case if the percentage added is less than the percentage sold.

The only way, the number of goats will remain the same is if p > q.

Q. A leather factory produces two kinds of bags, standard and deluxe. The profit margin is Rs. 20 on a standard bag and Rs. 30 on a deluxe bag. Every bag must be processed on machine A and on Machine B. The processing times per bag on the two machines are as follows:

Time required (Hours/bag)

Machine A Machine B

Standard Bag 4 6

Deluxe Bag 5 10

The total time available on machine A is 700 hours and on machine B is 1250 hours. Among the following production plans, which one meets the machine availability constraints and maximizes the profit?

1. Standard 75 bags, Deluxe 80 bags 2. Standard 100 bags, Deluxe 60 bags

3. Standard 50 bags, Deluxe 100 bags 4. Standard 60 bags, Deluxe 90 bags

Soln. (1) — Let ‘x’ be the number of standard bags and ‘y’ be the number of deluxe bags.

Thus, 4x + 5y 700 and 6x + 10y 1250

Among the choices, 3 and 4 do not satisfy the second equation.

Choice 2 is eliminated as, in order to maximize profits the number of deluxe bags should be higher than the number of standard bags.

Q. The function f(x) = |x – 2| + |2.5 – x| + |3.6 – x|, where x is a real number, attains a minimum at

1. x = 2.3 2. x = 2.5 3. x = 2.7 4. None of the above

Soln. (2) — Case 1: If x 2 + 2 + 2

> 6

Q. In a certain examination paper, there are n questions. For j = 1,2 …n, there are 2n–j students who answered j or more questions wrongly. If the total number of wrong answers is 4095, then the value of n is

1. 12 2. 11 3. 10 4. 9

Soln. (1) — Let us say there are only 3 questions. Thus there are 23–1 = 4 students who have done 1 or more questions wrongly, 23–2 = 2 students who have done 2 or more questions wrongly and 23–3 = 1 student who must have done all 3 wrongly. Thus total number of wrong answers = 4 + 2 + 1 = 7 = 23 – 1 = 2n – 1.

In our question, the total number of wrong answers = 4095 = 212 – 1. Thus n = 12.

Q. Consider the following two curves in the x-y plane:

y = x3 + x2 + 5

y = x2 + x + 5

Which of following statements is true for ?

1. The two curves intersect once. 2. The two curves intersect twice.

3. The two curves do not intersect 4. The two curves intersect thrice.

Soln. (4) — When we substitute two values of x in the above curves, at x = –2 we get

y = –8 + 4 + 5 = 1

y = 4 – 2 + 5 = 7

Hence at x = –2 the curves do not intersect.

At x = 2, y = 17 and y = 11

At x = –1, y = 5 and 5

When x = 0, y = 5 and y = 5

And at x = 1, y = 7 and y = 7

Therefore, the two curves meet thrice when x = –1, 0 and 1.

Q. Let T be the set of integers {3,11,19,27,…451,459,467} and S be a subset of T such that the sum of no two elements of S is 470. The maximum possible number of elements in S is

1. 32 2. 28 3. 29 4. 30

Soln. (4) – Tn = a + (n – 1)d

467 = 3 + (n – 1)8

n = 59

Half of n = 29 terms

29th term is 227 and 30th term is 243 and when these two terms are added the sum is more than 470.

Hence the maximum possible values the set S can have are 30.

Q. A graph may be defined as a set of points connected by lines called edges. Every edge connects a pair of points. Thus, a triangle is a graph with 3 edges and 3 points. The degree of a point is the number of edges connected to it. For example, a triangle is a graph with three points of degree 2 each. Consider a graph with 12 points. It is possible to reach any point from any point through a sequence of edges. The number of edges, e, in the graph must satisfy the condition

1. 2. 3. 4.

Soln. (1) —The least number of edges will be when one point is connected to each of the other 11 lines, giving a total of 11 lines. One can move from any point to any other point via the common point. The maximum edges will be when a line exists between any two points. Two points can be selected from 12 points in 12C2 i.e. 66 lines.

Q. There are 6 boxes numbered 1,2,… 6. Each box is to be filled up either with a red or a green ball in such a way that at least 1 box contains a green ball and the boxes containing green balls are consecutively numbered. The total number of ways in which this can be done is

1. 5 2. 21 3. 33 4. 60

Soln. (2) — GRRRRR, RGRRRR, RRGRRR, RRRGRR, RRRRGR, RRRRRG

GGRRRR, RGGRRR, RRGGRR, RRRGGR, RRRRGG

GGGRRR, RGGGRR, RRGGGR, RRRGGG

GGGGRR, RGGGGR, RRGGGG

GGGGGR, RGGGGG

GGGGGG

Hence 21 ways.

DIRECTIONS for next two questions: Answer the questions on the basis of the information given below.

A certain perfume is available at a duty-free shop at the Bangkok international airport. It is priced in the Thai currency Baht but other currencies are also acceptable. In particular, the shop accepts Euro and US Dollar at the following rates of exchange:

US Dollar 1 = 41 Bahts

Euro 1 = 46 Bahts

The perfume is priced at 520 Bahts per bottle. After one bottle is purchased, subsequent bottles are available at a discount of 30%. Three friends S, R and M together purchase three bottles of the perfume, agreeing to share the cost equally. R pays 2 Euros. M pays 4 Euros and 27 Thai Bahts and S pays the remaining amount in US Dollars.

Q1. How much does M owe to S in US Dollars?

1. 3 2. 4 3. 5 4. 6

Q2. How much does R owe to S in Thai Baht?

1. 428 2. 416 3. 334 4. 324

Soln. — 1. (3) and 2. (4)

S, M and R in all spend 1248 bahts.

Initially M pays 211 bahts and R pays 92 bahts.

Remaining is born by S i.e; 945 bahts

If 1248 is divided equally among S,M and R each has to spend 415 bahts

Hence M has to pay S 205 bahts which is 5 Dollars.

And R has to pay 324 bahts to S.

DIRECTIONS for next five questions: Each question is followed by two statements, A and B. Answer each question using the following instructions.

Choose 1 if the question can be answered by one of the statements alone but not by the other.

Choose 2 if the question can be answered by using either statement alone.

Choose 3 if the question can be answered by using both the statements together, but cannot be answered by using either statement alone.

Choose 4 if the question cannot be answered even by using both the statements together.

Q. Is a44 16, say b = 17

Hence 244 as follows.

f(a, b) = a, if b = 0.

f(a, b) = f(b, r) if b > r, where r is the remainder when a is divided by b.

110. The value of f(27, 18) is

a. 6 b. 9 c. 12 d. None of these

111. f(6, 4) equals to

a. f(54, 52) b. f(56, 52) c. f(52, 48) d. None of these

112. The value of f(15, 9) is

a. 5 b. 9 c. 1 d. None of these

113. f(44, 15) equals

a. 4 b. 3 c. 5 d. None of these

114. f(9, 3) equals

a. f(54, 50) b. f(54, 51) c. f(54, 48) d. None of these

Page 16 XAT – Mock

Direction for questions 115 to 118: Answer the questions based on the following information.

There are three projects and at least one project is to be selected and the following specified certain conditions

are given for the selection of these projects.

Condition I: Projects 1 and 2 must be selected.

Condition II: Project 1 or 3 must be selected but both cannot be selected.

Condition III: Project 2 can be selected only if project 3 is selected.

115. Ignoring the conditions I, II and III, how many different ways of selecting projects are there?

a. 6 b. 7 c. 4 d. 8

116. The number of selection combinations which satisfy at most one of the three conditions is

a. 3 b. 2 c. 4 d. 5

117. The number of selection combinations which satisfy at least two conditions is

a. 3 b. 4 c. 5 d. 2

118. The number of selection combinations which satisfy condition 3 is

a. 4 b. 3 c. 5 d. 6

Direction for questions 119 to 125: Given below are some series of numbers or letters. One member of the

series is missing form the list marked as ‘?’. From the alternatives given for each question, select the correct

one.

119. 1W 2V 3U 5T ? 13R

a. 11Q b. 8X c. 9S d. 8S

120. HV GT FR EP DN ?

a. EM b. CW c. CL d. CM

121. I M Q ?

a. T b. W c. Z d. U

122. 258 130 66 ? 18 10

a. 34 b. 32 c. 36 d. 40

123. D F I M R ?

a. S b. X c. Y d. V

124. 2 3 4 6 8 ? 16 24

a. 14 b. 11 c. 13 d. 12

125. 2 4 8 14 22 ?

a. 28 b. 34 c. 32 d. 38

XAT – Mock Page 17

Direction for questions 126 to 130: Following questions consist of a number of assertions. Each sentence is

an assertion. Some of these assertions may be inconsistent with each other. From these you can form groups

of assertions that are consistent with each other. You have to find the largest number of consistent assertions

in each case.

126. Bricks can be used as pillows. Only soft pillows put insomniacs to sleep. Ashok is not an insomniac.

Bricks are not soft. Ashok sleeps using bricks as pillows. Only insomniacs take sleeping pills. Ashok

takes sleeping pills.

a. 5 b. 6 c. 4 d. None of these

127. All poets are creatures of fantasy. Ram cannot create fantasy. Those who create fantasy are creatures

of fantasy. Those who are creatures of fantasy can create fantasy. Ram is a poet. Ram is a creature of

fantasy.

a. 4 b. 3 c. 5 d. None of these

128. Geeta is a housewife. No housewife can be an office worker. All housewives are cooks. Only good cooks

can cook fried rice. Geeta works in office. Geeta can cook fried rice. Geeta is not a very good cook.

a. 6 b. 5 c. 4 d. None of these

129. You can fool some people all the time but not all. Some people cannot be fooled all the time. Most of the

people can be fooled all the time. All the people can be fooled some time. Some people cannot be fooled

anytime.

a. 5 b. 4 c. 3 d. None of these

130. All successful managers are dishonest. All dishonest managers are successful. X is a successful

manager if and only if Y is a successful manager. X is an unsuccessful manager and he is a dishonest

manager. X is a successful manager and Y is an unsuccessful manager. Y is an honest manager.

a. 3 b. 4 c. 5 d. None of these.

Direction for questions 131 to 136: Answer the questions based on the following experiment.

Five different balls (1, 2, 3, 4 and 5) are distributed into four different urns (I, II, III, and IV). Each urn may not

receive any ball, may receive exactly one ball, or more than one ball.

131. The number of ways urn II receives exactly two balls is

a. 135 b. 27 c. 270 d. None of these

132. The number of ways in which ball 1 goes to urn I is

a. 256 b. 64 c. 320 d. None of these

133. The total number of ways in which the balls can be distributed in the urns is

a. 625 b. 1,024 c. 120 d. None of these

134. The number of ways in which the balls can be distributed in the urns, such that no urn is empty, is

a. 120 b. 240 c. 119 d. None of these

Page 18 XAT – Mock

135. The number of ways in which the balls can be distributed such that all the balls go into one urn is

a. 4 b. 24 c. 120 d. None of these

136. In the above set of questions, if the number of balls is changed from five to three and the number of urns

is changed from four to three, then in how many ways can the balls be distributed such that only one urn

is empty?

a. 18 b. 9 c. 24 d. None of these

137. Complete the following series.

1, 1, 4, 12, 27, 51, ___.

a. 59 b. 86 c. 107 d. 114

138. What is the difference between the smallest and the largest six-digit numbers formed using the digits

0, 1, 2, 3, 4 and 5?

a. 440865 b. 419760 c. 502343 d. None of these

Direction for questions 139 and 140: Answer the questions based on the following data.

A survey was conducted by India Today to know how our Memebrs of Parliament (MPs) are conscious of the

population scenario of the country. The data below summarizes the number of children of the Lok Sabha and

the Rajya Sabha members, across different zones of the country.

7

1 2 3 >3

4

12 32 41 96

18 23 18 21 85

43 12 8 96

18 42 16 14 113

3 43 44 62 154

8 12 13 49

11

North

Central

West

Zone

Number of children

South

East

16 1 4 33

Lok

Sabha

members

Rajya

Sabha

members

21 23 5 3 59

6 17 7 7 42

2 21 26 18 68

Total no . of members

139. What per cent of the Rajya Sabha members do not have children at all?

a. 8.75% b. 11.24% c. 11.63% d. 10.35%

140. What is the average number of children of the Lok Sabha members from the south zone?

a. 1 b. 2 c. 3 d. Cannot be determined

XAT – Mock Page 19

141. Which of the following Shakespearean plays is parodied in a scene in the Arnold Schwarzenegger flop

Last Action Hero?

a. Romeo and Juliet b. Twelfth Night c. Hamlet d. As You Like It

142. Which of the following element is lightest and has the atomic number 1?

a. Neon b. Helium c. Oxygen d. Hydrogen

143. The ‘patella bone’ is better known as

a. The jaw bone b. The knee cap c. The ear lobe d. The mid nose bone

144. Walker Cup is associated with which of the following sports disciplines?

a. Golf b. Tennis c. Football d. Squash

145. Who wrote the novel Jurassic Park on which the famous Steven Spielberg film was based?

a. Arthur C.Clarke b. John Grisham c. Michael Crichton d. George Hans

146. Who directed the movies Jaws and Schindler’s List ?

a. Steven Spielberg b. M. Knight Shyamalan c. Henry Ogilvy d. Hauz Kahkar

147. Anand dairy farm is in which state of India?

a. Gujarat b. Maharashtra c. Rajasthan d. Orissa

148. Which of the following personality’s song features in Jagjit Singh’s album, Samvedna?

a. Murli Manohar Joshi b. V. P. Singh c. Indira Nooyi d. Atal Behari Vajpayee

149. Justice K.G.Shah Commission of Inquiry was set up for

a. the probe of Godhara carnage in Gujarat. b. the probe of 1999 Mumbai blasts

c. resolving the BODO problem d. resolving the POTO implementation problem

150. Which of the following personalites was addressing the meeting in Jalianwala Bagh on April 13,1919?

a. Dr Saifuddin Kitchlew b. Mahatma Gandhi

c. Lala Lajpat Rai d. None of these

151. Which of the following rulers suffered defeat in the famous Battle of Haldighati?

a. Akbar b. Aurangzeb c. Rana Pratap d. Ibrahim Lodi

152. ‘Allen Solly’, is a brand owned by which of the following group of companies?

a. Madura Coats b. Arvind Mills c. Mafatlal d. Raymonds

153. The controversial MIP-95 Mutual Fund scheme belongs to

a. UTI b. ICICI Prudential Life c. Om Kotak Mahindra d. HDFC Standard Life

154. Which of the following personalities would you associate with Arzoo.com?

a. Rahul Bajaj b. Sabeer Bhatia

c. N.R. Narayana Murthy d. Arun Kumar

155. ‘World Ozone Day’, is celebrated on which of the following days every year?

a. October 7 b. September 16 c. November 15 d. December 5

Section – III

Page 20 XAT – Mock

156. In Einstein’s famous equation E = mc2, if ‘E’ stands for energy and ‘m’ for mass, then what does ‘c’

stand for?

a. Instensity of light b. Speed of light c. Einstein’s constant d. Planck’s constant

157. Which of the following is the largest gland in the human body?

a. Liver b. Spleen c. Lungs d. Bile

158. This gentleman is associated with the propagation of the ‘Theory of heredity’ for the first time. We are

talking about

a. Gregor J. Mendel b. John Schotky c. Hargobind Khorana d. B. Srinivasan

159. What was the code name given for the joint Indian armed force’s, operations which evicted the Pakistanis

and their surrogates from Kargil in 1999 ?

a. Operation Vijay b. Operation Black Hill c. Operation PAKDEF d. Operation Victory

160. ‘Camry’ is the latest brand of car model from which of the following auto giant’s stable?

a. General Motors b.Toyota Motors c.Maruti Suzuki Ltd. d. Hyundai

161. ‘Be the first to know’, assures which of the following satellite channels?

a. CNN b. BBC World c. Fox News d. Star News

162. The muscial ‘West Side Story’ is based on which of the following Shakespearean plays?

a. As You Like It b. Romeo and Juliet c. Julius Caesar d. The Twelfth Night

163. What is the nickname of New York city?

a. Big Ben b. Big Apple c. City of Dreams d. Dominique’s City

164. A closed economy is one which

a. does not trade with the other countries

b. does not possess any means of international transport

c. does not have a coastal line

d. is not a member of the United Nations

165. The traditional economy is characterised by

a. division of labour and specialisation b. organisation of production for self consumption

c. capital intensive process of production d. increasing state intervention

166. Who is the present chief executive officer of General Electric (GE)?

a. Jack Welch b. Waren Buffett c. Jeffery Immelt d. Samuel J. Palmisano

167. Who is the chief executive officer of Microsoft?

a. Bill Gates b. Steve Ballmer c. Steve Wozniak d. Henry Kruger

168. Who is the chief executive officer of IBM?

a. Samuel J. Palmisano b. Phillip Bullock

c. Henry Kissinger d. Scott Mcneally

169. Which of the following company has the punchline ‘We bring good things to life’?

a. Intel b. BPL c. Philips d. General Electric

170. 3001: The Final Odyssey’ has been authored by which of the following personalities?

a. Arthur C. Clarke b. William Golding c. Issac Asimov d. Alvin Toffler

XAT – Mock Page 21

171. Which of the following is the capital city of Morocco?

a. Rabat b. Baku c. Bishkek d. Amman

172. Which river flows through the Grand Canyon in the USA?

a. Thames b. Thebes c. Colorado d. Mississippi

173. Which of the following towns was the birthplace of William Shakespeare?

a. Stratford-upon-Avon b. NewYork c. Thames City d. Viverendi City

174. The only state in India which has more female population than male population is

a. Orissa b. Kerala c. Maharashtra d. Nagaland

175. Which of the following missiles was test fired successfully on January 26, 2002?

a. AGNI – I b. AGNI – II c. AGNI – III d. AGNI – IV

176. Which of the following books is a good source of information on the history of Kashmir?

a. Kalhana’s Rajatarangini b. Kamban’s Raslila

c. Udayan’s Maitri d. Megasthenes’s India

177. India’s first electric car is known as

a. Reva b. Mewa c. Bewa d. Mova

178. The latest model of Barbie doll launched recently by Mattel Toys is

a. The President Barbie b. Spice Barbie

c. Dolly Barbie d. Rose Barbie

179. What is BPL according to Indian finance minister Yashwant Sinha?

a. Below Peer Location b. Bent to Pull Lead c. Below Poverty Line d. Below Poor Line

180. A professor of electrical engineering and computer sciences at MIT, his products have been used in

cars, space shuttles, ships and theatres. Who are we talking about?

a. Ajit Kelkar b. Amar Bose c. Arun Netravali d. Ajit S. Galgotia

181. Which of the following elements, after oxygen, is most abundant on earth’s crust?

a. Copper b. Silicon c. Aluminium d. Silver

182. Albert Einstein was awarded the Nobel Prize for which of his following works?

a. Discovery of X-rays b. Diffraction of light

c. Photoelectric effect d. Effect of light on the mass of a body

183. Who created Spiderman?

a. Stan Lee b. Roger Moore

c. Lee Falk d. Hector Remi Herge

184. Which was the only thing that remained in the Pandora’s Box after it was opened?

a. Love b. Life c. Hope d. Water

185. Beijing recently won the bid to host the 2008 Olympics. Which city achieved the second spot?

a. Chicago b. Toronto c. New Delhi d. New York

186. Which are the three destinations in Orissa known as part of the popular Golden Triangle?

a. Puri, Cuttack, Rourkela b. Puri, Konark and Bhubaneshwar

c. Cuttack, Bhubaneshwar, Puri d. Konark, Digha, Balasore

Page 22 XAT – Mock

187. ‘Gold Riband’, the brand owned by McDowell’s is a type of

a. Whisky b. Beer c. Rum d. None of these

188. Which of the following is a characteristic feature of a modern economy?

a. Predominance of agriculture b. Self-sufficient village economy

c. Diversity in production of commodities d. Static technology

189. Who is the disinvestment minister of India?

a. Arun Shourie b. George Fernandes

c. Ram Jethmalani d. Ghulam Nabi Azad

190. The newly appointed chairman of State Bank of India (SBI) is

a. Janaki Ballabha b. K. V. Kamath c. P. P. Vora d. A. K. Purwar

191. Who is the author of the famous novel Family Matters?

a. Arundhati Roy b. Anita Desai c. Rohniton Mistry d. Salman Rushdie

192. Who is the present president of Confederation of Indian Industry (CII)

a. A.V. Birla b. Ashok Soota c. Sanjiv Goenka d. R.S. Lodha

193. ‘It takes the rough with the smooth’ is used by which of the following car models?

a. TATA Sumo b. TATA Sierra c. TATA Indica d. Toyota Qualis

194. Justine Pasek was in the news for winning the Miss Universe title 2002 from Oxana Fedorora. She hails

from

a. Greece b. Panama c. Venezuela d. South Africa

195. Which of the following represents the number of member countries in WTO as on January 1, 2002?

a. 141 b. 142 c. 143 d. 144

196. Who was the first Indian film star who advertised for Lux soap ?

a. Persis Khambata b. Lila Chitnis c. Nargis d. Madhubala

197. The new chairman of NASSCOM is

a. Phiroz Vandrevala b. Pradeep Guha. c. Arun Netravalli d. Arun Kumar

198. ‘Cannon’ is a term associated with which of the following sports disciplines?

a. Carom b. Billiards c. Snooker d. Golf

199. Lifebuoy soap is brand of which of the following companies?

a. Godrej b. P&G c. HLL d. None of these

200. Light year is a unit of

a. distance b. time c. speed d. velocity

## Leave a Reply